Правильный пятиугольник

Правильный пятиугольник (или пентагон от греч. πενταγωνον) — геометрическая фигура, правильный многоугольник с пятью сторонами.
Свойства
- У правильного пятиугольника угол равен
- Площадь правильного пятиугольника рассчитывается по любой из формул:
- Высота правильного пятиугольника:
- Диагонали правильного пятиугольника являются трисектрисами его внутренних углов.
- Отношение диагонали правильного пятиугольника к стороне равно золотому сечению, то есть числу 1 + 5 2 {displaystyle {frac {1+{sqrt {5}}}{2}}} .
Поэтому радиус вписанной окружности, радиус описанной окружности, высоту и площадь правильного пятиугольника можно вычислить и без использования тригонометрических функций:
- Сторона:
- Радиус вписанной окружности:
- Радиус описанной окружности:
- Диагональ:
- Площадь:
- Правильным пятиугольником невозможно заполнить плоскость без промежутков (см. также Паркет)
- Отношение площадей правильного пятиугольника и другого правильного пятиугольника, образованного пересечением диагоналей исходного (середина пятиугольной звезды)
Построение
Правильный пятиугольник может быть построен с помощью циркуля и линейки или вписыванием его в заданную окружность, или построением на основе заданной стороны. Этот процесс описан Евклидом в его «Началах» около 300 года до н. э.
Вот один из методов построения правильного пятиугольника в заданной окружности:
-
Построение правильного пятиугольника
-
Построение правильного пятиугольника
-
Построение правильного пятиугольника
-
Альтернативный метод построения правильного многоугольника с помощью линейки и циркуля
Получение с помощью полоски бумаги
Правильный пятиугольник можно получить, завязав узлом полоску бумаги.
Узел из полоски бумаги, образующий пятиугольникВ природе
В природе не существует кристаллов с гранями в форме правильного пятиугольника, но исследования формирования водяного льда на ровной поверхности меди при температурах 100—140 K показали, что сначала на поверхности возникают цепочки молекул шириной около 1 нм не гексагональной, а пентагональной структуры. Пентасимметрию можно увидеть во многих цветах и некоторых фруктах, например в таких как эта мушмула германская. Пентасимметрией обладают иглокожие (например морские звёзды) и некоторые растения. См. также Закономерности в природе.
-
Иглокожие, например морские звёзды, обладают пентасимметрией
-
Пентасимметрию можно увидеть во многих цветах и некоторых фруктах, например в таких как мушмула германская
Интересные факты
- Додекаэдр — единственный из правильных многогранников, грани которого представляют собой правильные пятиугольники.
- Правильный пятиугольник — правильный многоугольник с наименьшим количеством углов из тех, которыми нельзя замостить плоскость.
- Правильный пятиугольник со всеми его диагоналями является проекцией правильного пятиячейника (4-симплекса).
- Пентагон — здание Министерства обороны США — имеет форму правильного пятиугольника.